

Template syllabus of the revised courses

Course Name	: HYDROLOGICAL MODELLING
Number of credits	: 3 ECTS

: First semester

Coordinator	A/P Nguyen Van Cong
Credits	3 ECTS
Lecturers	A/P Tran Van Ty, Dr. Huynh Vuong Thu Minh
Level	Master
Host institution	College of Environment and Natural Resources, Can Tho University
Course duration	7 weeks
New/revised	Revised

Summary

Period

In this 3 ECTS course, students will be provided systematically about the basic concepts of modeling and the process of building and simulating applied mathematical modeling. Expertise in math modeling currently applied in the field of hydrology and problems related to water resource use in the Mekong Delta, Vietnam and around the world.

Target student audiences

Master in Hydraulic Engineering

Prerequisites

Required courses (or equivalents): N/A

Aims and objectives

- Students grasp common mathematical modeling processes and concepts
- Knowledge of basic concepts and calculation methods of all kinds of hydrological problems.
- Applying mathematical model to hydrological problems related to exploitation use, water resource management such as calculation of flow characteristics, hydrological forecasting, balance calculation and water resource use planning, flood prevention planning, integrated management in the original country.

The Authentic Tasks are:

• This course will help students apply the mathematical model to the hydrological problem related to the exploitation and management of water resources such as calculating the flow characteristics, hydrological forecasts, calculating balance and planning the use of water resources., flood prevention planning, integrated management in the whole country.

General learning outcomes:

By the end of the course, successful students will:

Knowledge •	Understand the concept and process of building general mathematical models Apply random and statistical models to the analysis of hydrological data.
Skills •	Skills to simulate hydrostatic math models Proficient skills in using some computational software Self-study and research skills
Attitude / capacity of • autonomy and responsibility •	Active, willing to learn and self-study Has a positive attitude in research

Overview of sessions and teaching methods

The course will make most of interactive and self-reflective methods of teaching and learning and, where possible, avoid standing lectures and presentations.

Learning methods

- Project Based Learning
- Literature review
- Stakeholder analysis / customer consultation

Course outline

Week	Topics
Week 1	Topic 1: The deterministic model
Week 2	Topic 2: Random pattern
Week 3	Topic 3: Random pattern
Week 4	Topic 4: Statistical analysis in Hydrological calculation
Week 5	Practice Lessons 1. HEC-HMS model
Week 6	Practice Lessons 2. Artificial intelligence network model ANN
Week 7	Practice Lessons 3. Statistical analysis

Literature

Compulsory N/A

Recommended:

[1] Tran Van Ty, Huynh Vuong Thu Minh, 2019. Mô hình toán thủy văn lưu – NXB Đại học Cần Thơ.

[2] CT. Haan, HP. Johnson and DL. Brakensiek, 2003. Mô hình toán thủy văn lưu vực nhỏ (Người dịch: Nguyễn Thanh Sơn).

[3] Đặng Văn Bảng, 2001. Bài giảng Mô hình toán thủy văn, Khoa Thủy văn mội trường, Trường Đại học Thủy lợi.

[4] Lê Văn Nghinh, 2008. Giáo trình cao học Thủy lợi: Mô hình toán thủy văn. NXB Xây dựng.

[5] Lê Văn Nghinh, 2003. Tính toán thủy văn thiết kế. NXB Nông nghiệp.

[6] Maidment, David R. Handbook of Hydrology, 1993. New York, USA, McGraw-Hill Book company.

[7] Mark Ole and David Luketina, 2003. Hydrological Modelling - Lecture notes. AIT. Thailand.

[8] Huynh Vuong Thu Minh, Giáo trình Thủy Văn Công Trình – NXB Đại học Cần Thơ, 2010.

[9] Hair Jr, J.F. Multivariate Data Analysis Joseph F. Hair Jr. William C. Black Barry J. Babin Rolph E. Anderson Seventh Edition.

Course workload

The table below summarizes course workload distribution:

Activities	Learning outcomes	Assessment	Estimated workload (hours)
In-class activities (37.5 hours)			
Teaching theory in class	Students are provided with general math modeling processes and concepts.	Join the class	
	 Applying mathematical model to hydrological problems related to exploitation use, water resource management such as calculation of flow characteristics, hydrological forecasting, balance calculation and water resource use planning, flood prevention planning, integrated management in the original country. Apply random and statistical models to the analysis of hydrological data 		
Class discussion is moderated	Discuss each case of the lesson	Join classes and prepare for discussions	
Exercises in class, practical homework Lesson 1. HEC-HMS model Lesson 2. Artificial intelligence network model ANN Lesson 3. Statistical analysis	Completed individually	Join classes and prepare for assignments	
Reading and discussion of assigned papers for preparation for lectures	Depending on the number of academies and topics, groups of exercises will be appropriate	Class participation, creative and active contribution to discussion	

Presentation group	Depending on the number of academies and topics,	Quality group exercises and
	the group will group the	individual
	appropriate presentation	presentations
Independent work (75 hours)		
Working group:		Quality group
- Contribution to group case		exercises and
studies projects		individual
- Contribute to the preparation		presentations
and delivery of personalized		1
presentations		
- Contribute to web application		
Course group exercises		
Presentation group		Quality group
		exercises and
		individual
		presentations
Total		•

Grading

The students' performance will be based on the following:

Assessment	 Progress assessment (10%): attend class and discuss plenary Group report (30%): Participants will be divided into groups of 4-5 students and choose 1 topic and complete a group project report according to specific requirements of each topic.
Evaluation	 Final examination (60%): Multiple choice quiz A (8,5 - 10) B (7,0 - 8,4) C (5,5 - 6,9) D (4,0 - 5,4)